Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform

Kieran G. Larkin
Canon Information Systems Research Australia, 1 Thomas Holt Drive, North Ryde, Sydney, NSW 2113, Australia, and Department of Physical Optics, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

Donald J. Bone
Advanced Image Research, P.O. Box 1001, Dickson ACT 2602, Australia

Michael A. Oldfield
Canon Information Systems Research Australia Pty Ltd, 1 Thomas Holt Drive, North Ryde, Sydney, NSW 2113, Australia

(Received August 24, 2000; revised manuscript received January 16, 2001; accepted January 22, 2001)

It is widely believed, in the areas of optics, image analysis, and visual perception, that the Hilbert transform does not extend naturally and isotropically beyond one dimension. In some areas of image analysis, this belief has restricted the application of the analytic signal concept to multiple dimensions. We show that, contrary to this view, there is a natural, isotropic, and elegant extension. We develop a novel two-dimensional transform in terms of two multiplicative operators: a spiral phase spectral (Fourier) operator and an orientational phase spatial operator. Combining the two operators results in a meaningful two-dimensional quadrature (or Hilbert) transform. The new transform is applied to the problem of closed fringe pattern demodulation in two dimensions, resulting in a direct solution. The new transform has connections with the Riesz transform of classical harmonic analysis. We consider these connections, as well as others such as the propagation of optical phase singularities and the reconstruction of geomagnetic fields. © 2001 Optical Society of America

OCIS codes: 100.2650, 100.2960, 100.5070, 100.5090, 120.3180, 120.5050.

1. INTRODUCTION: HISTORICAL SURVEY

Our work on the natural demodulation of two-dimensional (2-D) fringe patterns will be presented in two parts. In this, Paper I, we present a background to the heuristic derivation of the spiral phase quadrature transform and some simulations. In Paper II (this issue) a mathematical basis for the validity and the accuracy of the spiral phase quadrature transform is investigated. The work presented is the culmination of several years of investigating mathematical methods for the demodulation of human fingerprints and other naturally occurring fringe patterns. Although the presentation concentrates on the logical development of the isotropic quadrature operator, it glosses over the rather convoluted experimental development of the technique. The discovery that our method of isotropic demodulation is closely related to the Riesz transform occurred after the technique was working effectively as an image processing operation. Similarly, the mathematical justification for the heuristic method was developed only after extensive experimental testing on real and simulated fringe patterns. The chronicle might have been different if there were less conflicting information on the Hilbert transform (HT) in two dimensions.

To help understand the confusion regarding the extension of the HT beyond one dimension, a brief historical survey of the literature is useful. The concept of an analytic (or holomorphic) signal was introduced to communication theory by Gabor1 in 1947 for one-dimensional (1-D) signals. An analytic signal consists of two parts: The real part is the base signal, and the imaginary (or quadrature) part is the HT of the real part. The theory of analytic signals naturally underpins many modern concepts of signal analysis such as amplitude and frequency (AM–FM) demodulation, spectral analysis, instantaneous frequency, interferometry, and radar. Unfortunately, the concept has not, apparently, extended naturally beyond one dimension without implying a preferred direction. Consequently, a number of avowedly ad hoc definitions of the 2-D HT have been proposed2–7 with varying degrees of directionality. Typical definitions have half-plane symmetry,5 quadrant-based symmetry,8,9 or rotated half-plane symmetry.10 A recent development is the idea of extending the complex analysis of the Fourier transform (FT) to hypercomplex numbers. The concept has been called “hyper-complex signal representation” by Bülow and Sommer11,12 and potentially allows an unambiguous definition of the analytic image in two dimensions. Unfortunately and surprisingly, the published definition has a degree of directionality that is apparent in the demodulated envelope patterns.11 A similar idea using quaternions and even octonions for multidimensional signals
was proposed by Craig13 in 1996. The quaternionic approach allows several possible definitions but introduces additional phases into the definition of the analytic image.

In the area of phase retrieval, the concept of analyticity is central to the understanding of multidimensional band-limited signals.14 Interestingly, the mathematical development of a complex function of several complex variables (and the associated Cauchy–Riemann equations) leads, in this case, to a nonisotropic interpretation of the HT relations in the two real-space variables.15,16 However, an alternative definition of the multidimensional Cauchy–Riemann conditions leads to isotropic equations.17 In an isotropic system it is not clear why there should be a preferred direction. Sometimes, anisotropic definitions are justified by the symmetry of the problem. For example, images obtained by differential interference contrast microscopy have one direction related to the differential shear, so the application of a directional multidimensional HT may be appropriate.18 Similarly in three-dimensional (3-D) white-light interferometry the HT relation applies to just one coordinate.19

Little known to many researchers in signal processing, the theory of the HT extended to \(n \) dimensions (\(n \) real variables) has been in development since the 1920s by pure mathematicians working in an area known as the harmonic analysis of singular integrals. Following Hilbert’s lead,20 Riesz21 proposed “fonctions conjuguées,” or conjugate functions, as extensions to the HT. Subsequently, independent work by Tricomi22 and Giraud23 developed the same idea. More recently, the works of Mikhlin,24,25 followed soon after by that of Calderon and Zygmund,26,27 have proved the existence and the convergence of the associated integral operators.28 Another approach to the problem by the generalization of the Cauchy–Riemann conditions to higher dimensions was undertaken by Fulton and Rainich.17 Readers wishing to follow the rather circuitous development of the \(n \)-dimensional Riesz transform (RT) (as the \(n \)-dimensional analog of the HT is now known) are advised to start with the textbooks by Stein29 and Mikhlin25 and the paper by Carberry.30 The main complication with the RT is that it is an \(n \)-vector for an \(n \)-dimensional scalar signal, and the corresponding analytic signal is an \((n + 1)\)-vector. In 2-D image processing the resulting signal is a three-vector and cannot be displayed as a complex image.

Of all the applied sciences, geophysics has been perhaps the most successful in finding possible definitions of the 2-D HT over the years13,31–34 Indeed, the definitions of Nabighian32 and Craig13 developed for geomagnetic field analysis coincide with the definition of the RT, although they do not explicitly refer to the RT in their work.

A number of researchers have claimed that a true 2-D HT can be considered difficult35 or impossible.6,36–39 The difficulty is based on the perceived problem of extending the 1-D signum function, central to the 1-D HT, to a 2-D signum function. The spiral phase formalism for the 2-D HT developed in this paper marks a conceptual change from the incumbent linear signum function to a revolutionary signum function. To demonstrate the power of the new formalism, we use an otherwise intractable problem in fringe pattern analysis, which becomes almost trivial because the usual difficulty in linearly separating spectral zones does not occur.

Two recent publications have touched on the idea of an isotropic HT. The first39 (written in German, but our translation is available to interested researchers) explicitly uses the 2-D RT to enhance digital images. The second41 considers a “radial HT” for digital image enhancement but in the context of an optical spiral phase filter implemented with a spatial light modulator. Neither publication discusses the rather significant quadrature effects of the transform. In this publication we shall concentrate upon the remarkable phase- and quadrature-related effects rather than the intensity or magnitude effects seen in digital images.

2. BACKGROUND: ONE-DIMENSIONAL HILBERT TRANSFORM

Details of the conventional HT \(\mathcal{H} \) and analytic signal are well described in Bracewell’s classic textbook.42 Perhaps the most important property for signal processing is that it transforms all cosine components in a function of \(x \) to sines and vice versa, regardless of scale factor \(\lambda \):

\[
-\sin(\lambda x) = \mathcal{H}\{\cos(\lambda x)\} \quad \text{for } \lambda > 0, \\
\cos(\lambda x) = \mathcal{H}\{\sin(\lambda x)\}.
\]

In many cases the Fourier (or spectral) description of the HT is informative:

\[
\mathcal{F}\{f(x)\} = \mathcal{H}\{f(x)\}
\]

defines the HT of a real function \(f \), and

\[
p(x) = f(x) - i\mathcal{F}\{f(x)\} = |b(x)|\exp[i\phi(x)]
\]

defines the corresponding complex analytic signal.

The FT operator \(\mathcal{F} \), operating on \(g \), is given by

\[
G(u) = \int_{-\infty}^{\infty} g(x)\exp(-2\pi iux)dx = \mathcal{F}\{g(x)\},
\]

whereas the FT of the HT of \(g \) is given by

\[
i\text{sign}(u)G(u) = \mathcal{F}\{\hat{g}(x)\}.
\]

In other words, the FT of the HT of \(g \) is the FT of \(g \) multiplied by an imaginary signum function (see Fig. 1). Note that \(g \) and \(\hat{g} \) are real functions. Many attempts to

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1}
\caption{Half-plane signum function plotted as a function of frequency coordinates \((u, v)\).}
\end{figure}
extend the HT are based on extending the signum function to two dimensions. Conventionally, these are products of 1-D functions, which result in the half-plane and quadrant signum functions. Such products are highly anisotropic owing to the directional line discontinuities, culminating in the familiar anisotropic definitions. A more promising approach, conceptually, is to maintain the point discontinuity of the 1-D signum function in higher dimensions. Clearly, a point is a nondirectional discontinuity in two or more dimensions. The transforms of several authors actually have a point discontinuity,13,32 however, the output is not a scalar for a scalar input but is either a two-vector or a quaternion. It is not immediately clear how to interpret the output in such cases, and this may explain to some extent why these methods have not been endorsed more generally.

3. TWO-DIMENSIONAL QUADRATURE FUNCTIONS

We are quite clear about what we demand of a 2-D quadrature transform, even if a 2-D HT is difficult to agree upon. A classical problem in fringe analysis illustrates the requirements rather well. A typical 2-D fringe pattern has the following form:

\[f(x, y) = a(x, y) + b(x, y)\cos(\phi(x, y)). \] (7)

Typically, the offset and modulation terms, \(a\) and \(b\), respectively, are slowly and smoothly varying functions. The phase function \(\phi\) is also smoothly varying, but the combined effect is a rapidly oscillating function \(f\). The objective of fringe pattern analysis (also the objective of AM–FM signal demodulation in general) is to extract the amplitude and phase functions, \(b(x, y)\) and \(\phi(x, y)\), respectively. One of the most powerful methods—known as the Fourier transform method (FTM)—was originally developed for one dimension43,44 and subsequently extended to two dimensions.45 The two main complications in two dimensions are that the FTM cannot separate the overlapping spectral components of closed-curve fringes and that there are local and global ambiguities in the sign (+) of the output quadrature estimate.46 Until now, no direct methods have been able to surmount these obstacles (note that indirect methods using either computationally intensive optimization algorithms47 or extensive manual intervention can succeed). We can identify two key points in the development of a direct 2-D quadrature method. The first is, in accordance with conventional belief, the definition of a suitable 2-D signum function in the spectral domain. The second is that a 2-D signum function alone is unable to ensure that the output is real (for real input), of the correct polarity, and direction insensitive. To do this, we propose a second operation purely in the spatial domain.

The full 2-D Fourier domain analysis of our proposed operator is presented in Paper II. Our proposed 2-D signum function is defined simply as a pure spiral phase function in spatial frequency space \((u, v)\):

\[S(u, v) = \frac{u + iv}{\sqrt{u^2 + v^2}} = \exp[i\phi(u, v)]. \] (8)

Here the phase \(\phi\) is the polar angle in frequency space. The spiral phase function has the curious property that any section through the origin is a signum function. The major influence in the conceptual and mathematical development of our spiral phase formalism has been the research on optical vortices. Nye and Berry45 first showed that edge dislocations can exist in 3-D waves and that the phase around the edge resembles a vortex. There are deep connections mainly related to the Fourier property of far-field diffraction patterns.48–51 Spiral phase plates or holograms in the Fourier plane are analogous to the Fourier multipliers of singular integrals. Another connection is that the spiral phase discontinuity (in the guise of a residue) is central to the theory of phase unwrapping in two dimensions, as comprehensively described by Ghiglia and Pritt.52 The phase-unwrapping connection occurs again in the definition of orientation and is discussed further in Paper II. It transpires that the phase spiral is also consistent with definitions of the 2-D RT represented by a complex quantity instead of a two-vector. Figure 2 shows a representation of the principal value (p.v.) of the spectral polar angle \(\phi(u, v)\). The \(2\pi\) discontinuity in the phase p.v. \(\phi(u, v)\) is unimportant because the complex exponential in Eq. (8) is continuous everywhere (except the origin). Our reason for using the spiral phase function \(S\) is that it has the following properties:

1. It has odd radial symmetry, \(-S(u, v) = S(-u, -v)\), so that it converts odd radial functions to even, and even radial functions to odd.
2. It contains only a single point discontinuity (maintaining circular symmetry).
3. There is no radial variation of magnitude or phase with radius, and the magnitude is unity, hence ensuring scale invariance.
4. The relative angular variation is constant, so that it has uniform rotational properties.

This spiral phase Fourier multiplier is applied to \(g(x, y)\), a fringe pattern with its offset removed53:

\[g(x, y) = f(x, y) - a(x, y) = b(x, y)\cos[\phi(x, y)]. \] (9)

Hence the ideal quadrature function (assuming suitably band-limited amplitude and phase) would be

![Fig. 2. Spiral phase “signum” function exponent \(\phi\). The principal value of the complex exponent \(\phi(u, v)\) is shown in the range \(\pm \pi\).](image)
The FT of this pattern is a pair of delta functions

\[G_1(u, v) = b_0 \frac{1}{2} [\delta(u - u_0, v - v_0) + \delta(u + u_0, v + v_0)] \]

(14)

where the kernel function can be shown by general Fourier techniques to be a rather interesting spiral phase, inverse-square function,

\[s(x, y) = \frac{i(x + iy)}{2\pi(x^2 + y^2)^{3/2}} = \frac{i \exp(i \theta)}{2\pi r^2} \]

(18)

The spatial polar coordinates are defined as usual:

\[x = r \cos(\theta), \quad y = r \sin(\theta) \]

(19)

Equation (18) can also be interpreted as the complex sum of two 2-D Riesz kernels:

\[\mathcal{F}^{-1} \left[-i \frac{u}{q} \right] = \frac{x}{2\pi r^3}, \quad \mathcal{F}^{-1} \left[-i \frac{v}{q} \right] = \frac{y}{2\pi r^3} \]

(20)

where the spectral radial coordinate \(q \) is defined by

\[q^2 = u^2 + v^2 \]

(21)

These real functions are more familiar as the singular kernels in singular integral theory, but they can be combined in the real and imaginary parts of the complex Riesz kernel of Eq. (18). The complex notation is unusable in dimensions greater than two but can be advantageous in two dimensions because it implies possible optical implementations. The convolution kernel approach may be important for efficient implementations of the spiral phase transformation. The kernel clearly shows that the spiral phase transform is nonlocal, with a variation (1/\(r^2 \)) rather like that of the nonlocal 1-D HT kernel (1/\(r \)):
\[\mathcal{F}^{-1}\{i \text{sign}(u)\} = \frac{1}{\pi x}. \] \hspace{1cm} (22)

We have defined an orientational phase factor \(\exp[i\beta(x,y)] \) that is simply related to the fringe angle \(\beta(x,y) \). The Fourier spiral phase approximation is derived by considering the Fourier components of localized fringes and is valid for suitably smoothly varying parameters (the local simplicity constraint\(^{39}\)). Initial experiments indicate that the accuracy is better than 1\% for typical patterns, where the fringe radius of curvature is greater than the fringe spacing. In fact, relation (12) can actually be used to define the orientation \(\beta(x,y) \), but we take an alternative approach in the following examples. Orientation estimators are of great interest in human and computer vision, with some reliable methods currently available.\(^{39}\) We use a special orientation estimator to find \(\beta \), an estimator that does not flip 180° from fringe to fringe (i.e., it is not a simple gradient estimator) and so maintains local continuity. Details of orientation estimation are provided in the appendix to Paper II. The next step is simply to extract \(\hat{g} \) and calculate the 2-D complex image:

\[g - ig \hat{g} = g - \exp(-i \beta) \mathcal{F}^{-1}\{\exp(i\phi)\mathcal{F}\{g\}\}. \] \hspace{1cm} (23)

The process can be seen as a combination of pure phase function multiplication in the space domain \((x,y) \) and in the Fourier domain \((u,v) \). The operator \(\mathcal{V}\{\cdot\} \), defined by

\[\mathcal{V}\{g\} = -i \exp(-i\beta) \mathcal{F}^{-1}\{\exp(i\phi)\mathcal{F}\{g\}\}, \] \hspace{1cm} (24)

shall be referred to as the vortex operator for brevity in the following text. The vortex operator has the following invariant properties: scale, translation, and rotation (for properly defined \(\beta \)). In essence, the operator satisfies all the requirements of a hypothetical 2-D quadrature transform. The demodulation process defined by \(\mathcal{V}\{\cdot\} \) can be said to be natural in the sense that \(b \sin(\phi) \) (or, more correctly, \(-b \sin(\phi) \)) is the natural quadrature of \(b \cos(\phi) \) for 2-D functions as well as 1-D functions.

It transpires that an accurate orientation estimate is not necessary for high-accuracy phase demodulation or for high-accuracy amplitude demodulation, as can be seen in the following case, where we consider an orientation with an error \(\epsilon = \epsilon(x,y) \). The vortex operator then gives

\[\mathcal{V}\{g\} = b(x,y) \sin[i\psi(x,y)] \exp(-i\epsilon). \] \hspace{1cm} (25)

For small values of the error \((|\epsilon| < 0.1) \),

\[\mathcal{V}\{g\} \approx b(x,y) \sin[i\psi(x,y)] \left(1 - i\epsilon - \frac{\epsilon^2}{2}\right). \] \hspace{1cm} (26)

The phase estimate in this case ignores the imaginary part of the vortex transform:

\[\tan[\psi(x,y)] = \frac{\mathcal{F}\{g\}(x,y)}{g(x,y)} = \left(1 - \frac{\epsilon^2}{2}\right) \tan[\psi(x,y)]. \] \hspace{1cm} (27)

The error in the phase estimate, \(\delta\psi = \psi_e - \psi \), then has a particularly simple form\(^{56}\):

\[\delta\psi(x,y) = -\frac{\epsilon^2}{4} \sin[2\psi(x,y)]. \] \hspace{1cm} (28)

So the phase error is second order and follows the classic second-harmonic pattern familiar in phase-shifting interferometry. If, for example, the orientation error were a rather poor 0.1 rad, then the demodulated phase would be in error by a maximum of 0.0025 rad. The amplitude error derived from the real part of relation (26) is \(\delta b = b_\epsilon - b \), where

\[b_\epsilon^2 = b^2 \cos^2(\psi) + b^2 \left(1 - \frac{\epsilon^2}{2}\right) \sin^2(\psi), \] \hspace{1cm} (29)

\[\delta b = -\frac{\epsilon^2}{2} b \sin^2(\psi) = -\frac{\epsilon^2}{4} b \left[1 - \cos(2\psi)\right]. \] \hspace{1cm} (30)
The error is again second order with respect to the orientation error with dc and second-harmonic terms. However, by reformulating Eq. (23), we can demodulate the amplitude without any errors that are due to the orientation error:

\[|g|^2 + |g|^2 = |g|^2 + |\mathcal{F}^{-1}\{\exp(i\phi)\mathcal{F}\{g\}\}|^2 \]
\[= |b|^2 = \delta b = 0. \quad (31) \]

In summary, the errors in the orientation estimate cause only second-order errors in the demodulated phase. The demodulated amplitude may have second-order errors or no errors at all, depending on the demodulation algorithm. The second-order error property is indeed fortunate and makes the vortex transform inherently robust to errors.

A particularly elegant solution arises for circular symmetric patterns such as circular fringes. In this case the orientational phase in Eq. (24) is just a single spiral but in the opposite sense of the Fourier spiral—the overall transform is then a double spiral (or double vortex) transform. As far as we know, the direct demodulation of simple closed-curve fringe patterns has not been presented before. We shall present examples in Section 4.

\[\frac{563}{563} \]
In Fig. 5 we show details of the input and output images compared with idealized quadrature pairs and alternative demodulation methods. The quadrant ”Hilbert” transform3,14 has been included because it appeared recently in a problematic definition of the multidimensional analytic signal.11 The vortex operator complex image is visually very close to the ideal, failing only close to the discontinuity at the center. The half-plane Hilbert method fails seriously for any closed-curve fringe pattern. The horizontal fringes are highly distorted in this case, leading to a dark region in the estimated magnitude. The phase shows a local sign ambiguity and is also highly distorted in the transition region.10 The quadrant HT gives a slightly more isotropic estimate of the magnitude but fails rather badly with the phase estimate.11

In Fig. 6 we show a comparison of methods applied to the interference pattern from Fig. 4. This time the initial image has both amplitude and phase (AM–FM) structure.60 The input image also has uniform random noise added for realism (10% of peak signal, 100% of minimum signal). Again, the vortex operator generates an estimated complex image that is visually close to the ideal. The measured relative amplitude error \(\delta b/b \) is in the range \(-28\% \) to \(+10\% \) within a region less than half of a fringe from the central discontinuity of the underlying conical phase function. Outside a region just two fringes from the center, the measured relative error drops below \(3\% \), and the closeness to the ideal magnitude is clear in Fig. 7. The errors appear to be related to extremes of fringe curvature and spacing. In contrast, the half-plane HT produces anisotropic magnitude and phase estimates with the usual visible artefacts, as seen in Fig. 6. Note that the half-plane artefacts are typically very large (with measured magnitude errors in the range \(-98\% \) to \(+35\% \), for example) and widely dispersed, as illustrated in Fig. 7.

We believe that the general demodulation methods developed here for fringe patterns may be extended to more general 2-D patterns. However, the local orientation can no longer be defined (local simplicity does not apply), and the full RT approach with its additional components must be utilized. In a similar manner, extensions to three or more dimensions are possible.

5. EXACT SOLUTION FOR CIRCULAR SYMMETRIC PATTERNS

Our equation defining the vortex operator derives from an approximation linking the sine and cosine components of a general fringe pattern. Equation (16) gives an exact solution for equispaced straight fringes, but equispaced circular fringes (as comprehensively analyzed by Amidror61) transform only approximately as follows:

\[
V\{b(r)\cos(\lambda r)\} \equiv b(r)\sin(\lambda r), \quad \beta = 0, 0 < \lambda. \tag{32}
\]

As mentioned in Section 3, the transform is a particularly simple double vortex transform. However, the vortex transform generally breaks down near the origin, where the phase has a conical discontinuity, as shown in Fig. 5. Nevertheless, there is at least one simple circular symmetric function that transforms exactly with use of the vortex operator:

\[
V\{J_0(\lambda r)\} = J_1(\lambda r), \quad 0 < \lambda. \tag{33}
\]
This relation can be derived directly from the 2-D Fourier properties of Bessel functions (given on p. 661 of Bracewell’s 2-D imaging book62). The Bessel functions asymptotically approach decaying sinusoids for \(\lambda r > 3\), which is essentially within one fringe period. The exact solution above suggests an inverse formula:

\[
V^{-1}[J_1(\lambda r)] = J_0(\lambda r)
\]

where

\[
V^{-1}[g] = iV^{-1}[\exp(-i\phi)F[\exp(i\beta)g]].
\]

However, such an inversion may be impractical in more general, noncircular symmetric cases. This is because the inverse requires that orientation estimation and multiplication take place before the Fourier spiral phase transformation. Consequently, any errors in the orientation, especially discontinuities, will spread widely in the final result. The proposed forward algorithm does not have such a problem; any errors in the orientation estimate remain localized.

6. SUMMARY

We have surveyed the literature on multidimensional Hilbert transforms (HTs) and found that a number of groups have independently adopted a Riesz-transform-based definition (without necessarily recognizing the Riesz transform as such). In other areas of research, the directional, orthant-based HT definitions may have inhibited the evolution of isotropic forms. The proposed formalism for the vortex operator allows a quadrature transform and a complex “analytic” signal to be defined uniquely for any 2-D signals, such as fringe patterns, that satisfy the local simplicity constraint. The constraint is in keeping with the restricted definition of instantaneous frequency and the analytic signal in one dimension.63 We have demonstrated a new form of fringe pattern analysis by using the vortex operator, which directly demodulates 2-D patterns previously considered impossible. Both amplitude and phase demodulations are facilitated by this technique. We expect the vortex operator and the associated 2-D complex signal to have wide applications beyond the remarkable fringe pattern demodulation presented here. The vortex operator may be implemented simply in an optical system by using a spiral phase plate in the Fourier plane or the back focal plane of an imaging system, allowing near-instantaneous evaluation of quadrature functions and suggesting new optical imaging modes.

Note added in proof. Soon after this paper was submitted, Felsberg and Sommer11 presented a paper that corrected the previously anisotropic results of Bülow and Sommer.11 They introduce the so-called “monogenic” function as the extension of the analytic function to \(n\) dimensions. The idea of a monogenic function was taken from an area known as geometric algebra, closely connected with the Clifford algebra and quaternions. In a paper by Gull et al.,53 the monogenic function is derived from the Cauchy–Riemann conditions in \(n\) dimensions by using geometric algebra.

Address correspondence to Kieran G. Larkin at the first address given on the title page or by e-mail, kieran@research.canon.com.au.

REFERENCES AND NOTES

16. Not surprisingly, a separable (i.e., orthant) definition of the multidimensional HT leads only to separable solutions.
28. There may have been some confusion about the priority of crucial results in the properties of multidimensional singular integrals. It is well known that in 1948 Mikhlin showed the L^2 boundedness of the 2-D RT, whereas in 1952 Calderon and Zygmund proved the more general L^p boundedness of the n-dimensional RT.
53. There are a number of ways to remove the offset. Low-pass filtering is the simplest but often not the best method. In situations with multiple phase-shifted interferograms, the difference between any two frames will have the offset nullified. Adaptive filtering methods can also provide more accurate offset removal. In practice, offset removal may be difficult. The difficulty exists even for 1-D signal demodulation using Hilbert techniques, as shown in detail by N. E. Huang, Z. Shen, S. Long, M. C. Wu et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998). We shall not discuss the difficulty further in this initial exposition, but it should be noted that failure to remove the offset signal correctly may introduce significant errors.
55. We shall refrain from calling this function the 2-D analytic signal at present because there are several conflicting definitions of analyticity in multiple dimensions. The alternative term “monogenic” does not seem appropriate because the word now has another widespread use in molecular genetics.
60. Sharp-eyed readers may have noticed that the fringe pattern used in Figs. 4, 6, and 7 actually contains some spiral discontinuities, which are manifested as ridge enddings and bifurcations. The fringe pattern actually satisfies the local simplicity constraint everywhere except at the spiral center points. The robustness of the vortex transform to these discontinuities is significant but is not explored further in our initial exposition of the method. I. Amidror, “Fourier spectrum of radially periodic images,” J. Opt. Soc. Am. A 14, 816–826 (1997).